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The radiation patterns of sound from a ba%ed, oscillating piston are studied via
a numerical method. To investigate the e!ects of discontinuous boundary condition on the
sound radiation from a piston, we introduce three piston models that have, respectively,
de"nite characteristics at their own edges. Linearized Euler's equations in Cartesian
co-ordinates are solved by the dispersion relation preserving "nite di!erence scheme.
The numerical results are compared with the analytic results derived from the
Kirchho!}Helmholtz integral theorem. Through the comparison of numerical results of
each boundary condition, we "nd that discontinuity at the edge of the piston as well as the
Helmholtz number of the vibrating piston is an important factor in determining the sound
radiation pattern of the piston. The validity of numerical simulation for discontinuity e!ects
is con"rmed by comparison of the numerical and analytic results.
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1. INTRODUCTION

A good understanding of the geometry e!ect on noise propagation is of great importance
to noise control, especially in duct acoustics. It is well known that the directivity pattern
of the radiated noise consists of lobes (high intensity) and nodes (region of relative silence)
due to the refraction of the outgoing acoustic waves at the rim of an open end of the
duct. Theoretical methods [1}5] via Wiener}Hopf and other techniques have been
very successful in studying ducted acoustics radiation for #at ducts with zero thick-
ness. Recently, Dong et al. performed direct numerical simulations of noise radiation
from ducts with various geometries [6]. Tam also investigated the in#uence of nozzle
geometry on the noise of high-speed jets with experimental data [7]. Their studies, however,
were on the geometry-a!ected response characteristics of noise and not on its intrinsic
mechanism.

Sound radiation from a vibrating circular piston is a classical acoustics problem. An
expression for the acoustic pressure from the piston can be derived from the
Kirchho!}Helmholtz integral theorem [8, 9]. This formula resembles the results from the
Fresnel}Kirchho! theory of di!raction by an aperture on which a wave disturbance (plane
wave or diverging spherical wave) is incident. So this is the basic problem in which basic
physical mechanism can be studied from the standpoints of noise source characteristics or
sound propagation phenomena. The classical theory about this problem has been mostly
concerned with the far"eld sound radiation patterns that vary according to the Helmholtz
number of the vibrating piston. The Helmholtz number is widely used as an index that
determines the characteristics of a noise source*whether it is compact or non-compact.
0022-460X/01/030423#21 $35.00/0 ( 2001 Academic Press



424 C. CHEONG AND S. LEE
Numerical simulation of sound radiation from a vibrating circular piston without free
steam was provided as one of the benchmark problems in "rst computational aeroacoustics
workshop [10]. It is reported that short-wavelength spurious numerical waves are often
generated in the regions, in which there is rapid change in the boundary condition; in other
words, discontinuous boundary condition at the edge of the piston. But there is no other
in-depth description in order to understand noise radiation characteristics of such
discontinuous boundary condition.

In this paper, we carry out numerical simulation of sound radiation produced by an
oscillating, ba%ed piston with three types of boundary conditions, and with various
free-stream velocities by means of the DRP scheme. The objectives of this study are
two-fold. The "rst objective is to study the e!ect of the piston boundary conditions,
especially at the edge of the piston, on noise radiation patterns coupled with free stream. To
analyze this e!ect, we devise three types of piston models; Gauss function, Cosine function
and #at plane oscillation. The reason for selecting these oscillation types as the piston
boundary conditions is that they have de"nite mathematical characteristics. The "rst is the
oscillation of the piston that is continuous both in displacement and in slope at the edge of
the piston. The second is the oscillation of the piston that is continuous in displacement but
discontinuous in slope. The third is the vibration of the piston that is discontinuous in both.
Through the comparison with numerical results of these piston models, the e!ects of
boundary conditions at the edge of the piston on sound radiation patterns will be clearly
shown. The second is to test the numerical method's ability to simulate the discontinuity
e!ect on the sound radiation. In contrast to computational #uid dynamics (CFD), which
has advanced to a fairly mature state, computational aeroacoustics (CAA) has only recently
come forth as a separate area of study. Although aeroacoustics problems are governed by
the same equations as those in aerodynamics, acoustic waves have their own characteristics
which make computation challenging. Acoustic waves are intrinsically unsteady, and their
amplitudes are several orders smaller than the mean #ow and their frequencies are generally
very high. Distance from the noise source to the boundary of the computation domain is
also usually quite long. Thus, to ensure that computed solution is uniformly accurate over
such long propagation distances, the numerical scheme must be free of numerical
dispersion, dissipation and anisotropy. To satisfy these requirements, a high order
numerical scheme in both space and time is generally required for CAA. High order scheme
can support the spurious wave. The numerical simulation has an essentially discontinuous
property. Thus, it is known, as mentioned above, that the discontinuity boundary condition
in computational aeroacoustics produces spurious waves. To the author's knowledge,
however, it has not been researched or discussed in depth to this day. In this paper, it is
presented that the degree of discontinuity at the boundary region as well as the Helmholtz
number is also an important factor in a!ecting the sound radiation pattern from an
oscillating circular piston. Through the comparison with the analytic result obtained by
integrating numerically the equation derived from Kirchho!}Helmholtz's theorem for
in"nite plane surfaces [8, 9], the results of the numerical simulations for the e!ects of
discontinuity are validated.

The linearized Euler equations in Cartesian co-ordinates are solved with the
dispersion-relation-preserving (DRP) "nite di!erence scheme over the computational
domain. A number of "nite di!erence schemes [11}14] have been proposed but the
dispersion-relation-preserving (DRP) scheme of Tam and Webb [15] has proven to be quite
successful in calculating linear waves for many acoustic computations [16]. The radiation
and out#ow boundary conditions proposed by Tam and Dong [17] are applied at the
far"eld boundary of the computational domain. Wall boundary conditions are applied with
ghost values of pressure at the ghost points proposed by Tam and Dhong [18].
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The governing equations, numerical scheme and various boundary conditions will be
discussed brie#y in the next two sections. The exact solution is derived for comparison with
the numerical results and the classical theory is shown in section 4. The axisymmetric 2-D
and 3-D numerical simulations are executed and discussion on the numerical results for the
noise radiation from the oscillating piston in a free stream with three boundary types at the
edge of the piston are presented in sections 5 and 6.

2. GOVERNING EQUATIONS AND NUMERICAL METHODS

The linearized Euler's equations in Cartesian co-ordinates take the following form:

LU

Lt
#

LE

Lx
#

LF

Ly
#

LG

Lz
"0, (1)

where

U"

o

u

v

w

p

, E"

M
x
o#u

M
x
u#p

M
x
v

M
x
w

M
x
p#u

, F"

v

0

p

0

v

, E"

w

0

0

p

w

. (2)

Here, M
x

is the constant mean #ow Mach number in the x direction. All variables are
presented in non-dimensional form. The reference quantities are Dx for the length scale,
c (ambient sound speed) for the velocity scale, Dx/c for the time scale, o

=
for the density

scale, and o
=

c2 for the pressure scale.
The linearized Euler's equations in Cartesian co-ordinates are solved by the DRP "nite

di!erence scheme [15]. The DRP scheme is reviewed brie#y as follows.
Let the spatial derivative be an approximation by a central di!erence scheme with

a uniform mesh of spacing Dx as
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Now by applying Fourier transform to equation (3) and making use of the derivative and
shifting theorems, it is found
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where uJ is the spatial Fourier transform of u and kM is an e!ective wavenumber of the "nite
di!erence scheme:
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where k is the actual wavenumber, and i"J!1.



Figure 1. Numerical wave number kM Dx versus the actual wavenumber kDx for several "nite di!erence schemes:
***, 7-point fourth order DRP; ) ) ) ) ) ) ) ) ), 5-point second order DRP; } ) } ) } ) , 5-point fourth-order standard;
= = =, 3-point second Order standard.
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Thus, kM of equation (5) is seen as an approximation to the actual wavenumber k.
Moreover, the non-dimensionalized e!ective wavenumber kM Dx as a periodic function of
kDx with a period of 2n is a property of the "nite di!erence scheme a

l
. To assure that the

Fourier transform of the "nite di!erence scheme is a good approximation of that of the
partial derivative over certain wavenumber range, it is required that a

l
be chosen to

minimize the integrated error, E, over certain wavenumber range, a, where

E"P
a

0

DkDx!kM Dx D2 d(kDx). (6)

The conditions for E to be a minimum are
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Equation (7) provides N equations for the N coe$cients a
l
, l"1, 2,2 , N. It is possible to

combine the truncated Taylor series method and the Fourier transform optimization
method. In Figure 1, kM Dx as a function of kDx is plotted for several spatial discretization
schemes. It is observed that kM Dx approximates kDx adequately for only a limited range of
the long waves. The maximum resolvable wavenumber will be denoted by critical
wavenumber kM

c
. Using the criterion DkM Dx!kDx D(0)005, a list of kM

c
Dx values for several

central di!erence schemes is given in Table 1. Often the resolution of spatial discretization is
represented by the minimum points-per-wavelength needed to reasonably resolve the wave.

In all the following numerical simulations, we use a seven-point stencil that can be
obtained by minimizing equation (6) over the integral range, a"1)1 that is recommended
by Tam [15]. So, the number of points-per-wavelength must be over 5)4 to acquire the
reasonable accuracy of the numerical simulation.



TABLE 1

<alues of critical wavenumber for several ,nite di+erence schemes of the
spatial derivative

Resolution
Spatial discretization kM

c
Dx (points-per-wavelength)

7-point fourth order DRPs 1)163 5)40
5-point second order DRPt 0)820 7)66
5-point fourth order Standard 0)682 9)21
3-point second order Standard 0)300 20)97

Note: The scheme has been optimized through minimizing the integrated error, E,
over wavenumber range.
sa"1)1.
ta"0)9.
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Optimized four-level time discretization (Adams}Bashford method) is used as the explicit
time-marching scheme [15]. To advance to the next time level, we may use the following
"nite di!erence approximation:
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By comparing the two sides of equation (9), the quantity
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is the e!ective angular frequency of the time-marching scheme (8). The weighted error
E
1

incurred by using uN to approximate u will be de"ned as
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where Re( ) and Im( ) are the real and imaginary parts of ( ), p is the weight and 1 is the
frequency range where we expect uN to be a good approximation of u. By minimizing the
weighted error of equation (11), we can determine the coe$cients, b

j
( j"0, 1, 2, 3) of

equation (8). Through the stability analysis of the above time-marching scheme, it is found
that Dt to be chosen such that uN Dt(0)19 guarantees numerical stability and negligible
numerical damping.
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With the DRP "nite di!erence scheme, optimized 4-level time-marching scheme and the
arti"cial damping method, the governing equations of equation (1) are discretized as
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The last three terms in Equation (12) are the arti"cial damping terms where k
a

is the
arti"cial viscosity. All of the above coe$cients can be found in reference [15].

3. BOUNDARY CONDITIONS

3.1. FARFIELD BOUNDARY CONDITION

To ensure that the computed solutions are of high-quality, far"eld boundary condition
must be su$ciently transparent to the outgoing disturbances so that they exit in the
computation domain without much re#ection. The linearized Euler equations can support
three types of wave. Thus, in general, the outgoing disturbances would contain
a combination of acoustic, entropy and vorticity waves each having distinct wave
propagation characteristics. The acoustic wave consists of all physical variables and has its
own velocity. Thus, this wave moves at the velocity equal to the vector sum of free stream
and acoustic wave velocity. The entropy wave consists of density #uctuation alone. The
vorticity wave consists of velocity #uctuation alone. Because both waves do not have their
own velocity, they move downstream as a frozen type at the mean-#ow velocity. At the
outer boundary of the computational domain, radiation and out#ow boundary conditions
[17] are imposed. These boundary conditions are derived from the asymptotic solutions of
the linearized Euler's equations. The radiation boundary condition is used at the boundary
where there are only outgoing acoustic waves. On the other hand, the out#ow boundary
condition is used throughout the out#ow region, where outgoing disturbances consisting of
a combination of acoustic, entropy and vorticity waves exist. The equations are,
respectively,
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3.2. WALL BOUNDARY CONDITION

For inviscid #ows the well-known boundary condition at a solid wall is that the velocity
component normal to the wall is zero. This condition is su$cient for the determination of
a unique solution to the Euler equations. For a high order "nite di!erence scheme the order
of the di!erence equations is higher than that of the Euler equations. Thus, the zero normal
velocity boundary condition is insu$cient for de"ning a unique solution. Extraneous
numerical conditions must be imposed. Ghost value of pressure [18] is used as the
extraneous boundary condition.

Let us consider an inviscid #uid adjacent to a solid wall at y"0. In this case the wall
boundary condition is v"0 at y"0 where (u, v) are the velocity components in the x and
y directions respectively. Since there is one boundary condition, one ghost value is needed
for each boundary point at the wall. Physically, the wall exerts a pressure on the #uid with
a magnitude just enough to make v"0 at its surface. This suggests that a ghost value in p at
the ghost point immediately below the wall should be used to simulate the pressure of the
wall. The ghost value of p at the ghost point (l,!1) of the nth time step or p(n)

l,~1
is to be

chosen so that v(n)
l,0

is zero for all n. This can be accomplished through the discretized form of
the y-momentum equation. For more detailed descriptions see reference [18]. However, on
the solid surface of a wall, the slip boundary condition V ) nL

wall
"0 is imposed and ghost

values of pressure are applied as the extra boundary condition.

4. CLASSICAL THEORY AND ANALYTICAL SOLUTION

The acoustic pressure from an isolated vibrating body (or for a "xed surface enclosing
a source) in an otherwise unbounded #uid can be represented by the Kirchho!}Helmholtz
integral formula [8, 9]
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s
is a point on the surface of the body, and x is a point

outside the body.
A model for a source with a ba%e is that a limited portion of a surface has prescribed

normal velocity while the remainder of the surface being idealized as rigid. The surface is
taken as z"0 plane and the region on the #z side of the surface is idealized as unbounded.



Figure 2. Nomenclature for description of radiation from a vibration circular cylinder with normal velocity
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An expression for the acoustic pressure outside the surface can be extracted from the
Kirchho!}Helmholtz integral theorem with the aid of the method of images. The boundary
value problem, with non-zero v

n
(x, y, t) speci"ed on some area of the z"0 plane and

otherwise zero, is equivalent to that of the radiation from a thin disk of time-varying
thickness in an unbounded medium. The resulting z symmetry requires p, v

x
, and v

y
to be

even with z but v
z

to be odd with z. Consequently, the net contribution from surface
pressure to the Kirchho!}Helmholtz integral is zero. The integrals over the surface-normal
velocity from the front and back surfaces of the disk give equal contributions, so the
acoustic pressure produced by the components of the velocity normal to the z"#0 plane is
derived from Kirchho!}Helmholtz's theorem, as follows:
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The above equation can be rewritten for convenience as follows:
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where [ ] denotes the values at retarded time. If a piston in an in"nite plane wall has a #ow
with a uniform velocity U over it and the displacement of the surface of the piston is
m"m (x

s
, y

s
, t) (Figure 2), equation (18) can be expressed as follows:
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Rewriting this integral in terms of g"y#Uq gives
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(q*) D. The sound heard by the

observer at x and time t is emitted by the source at x
s
(q*) at time q*. The theoretical results

can be obtained by making numerical integration of equation (20).
At points where the radial distance r is much larger than piston radius, a suitable

approximation for characteristic far "eld is realized. In this case, R is replaced by r!x
s
) e

r
in the term of retarded time and by r in the denominator of equation (17) for the constant
frequency case. In such a limit of large r, equation (17) is reduced to the form of an outgoing
spherical wave with non-uniform directivity, as follows:
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The factor 2J
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(ka sin h)/(ka sin h), considered as a function of h, is 1 at h"0 and has one

zero between 1 and n/2 if 3)832(ka(7)016, two zeros if 7)016(ka(10)173, three zeros
if 10)173(ka(13)32, etc. The far"eld intensity corresponding to equations (21) and (22) is
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So the radiation patterns are given in Figure 3. A central lobe is centered at h"0 (h is the
angle from the axis of piston). As the Helmholtz number (ka) increases, the number of lobe is
also increased. These lobes are bounded at h"$sin~1(3)83/ka), plus one or more side
lobes. Through the above classical theory, we "nd that the Helmholtz number is the only
factor that determines the far"eld radiation patterns and characterize the noise source:
There is no consideration for the e!ects of boundary types on the sound radiation patterns.

5. 2-D AXISYMMETRIC SIMULATIONS

First, a test simulation was performed to assess the accuracy of the schemes and
boundary conditions for sound radiation from the piston of which the oscillation shape is
a #at plate. If there is no free stream, the problem is axisymmetric. The governing equations
for the r}x-plane where (r, x, h) are the cylindrical co-ordinate with the origin at the center



Figure 3. Far"eld radiation patterns of a vibrating #at piston with various Helmholtz numbers: (a) ka"n,
(b) ka"2n, (c) ka"3n, (d) ka"4n.
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of the piston are
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Figure 4 shows the computation domain and boundary conditions. The normal velocity
on the piston surface is set to be u"e

0
sin ut. The amplitude and angular frequency are set

to be 10~4 and 0)2n respectively. In numerical simulation, the mesh sizes are chosen to be
Dr"Dx"1 and the time step is Dt"0)01. At the axis of symmetry, r"0 and equation (25)
is singular. Two methods for the treatment of this singularity are used on the mesh points



Figure 4. The computation domain and boundary conditions for 2-D-simulation.

Figure 5. Zero-pressure contours (p"0) at the beginning of a cycle:***, numerical solution; ) ) ) ) ) ) , exact
solution.
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lying on the axis of symmetry. The "rst is just to set the velocity v on those mesh points to be
zero. The other is to substitute Lv/Lr for v/r in equation (25). Figures 5 and 6 each show the
computed zero-pressure contours (p"0) at the beginning of a cycle and the computed
pressure waveform along the axis of the piston at each quarter cycle respectively. It is found
that they agree well with the exact solutions. This problem was provided as the "rst CAA
benchmarking problem. In this problem, however, there is an abrupt change in the
governing "nite di!erence equations between the "rst two columns of mesh points on the
left side of the computation domain. In addition, there is an abrupt change, i.e.,
discontinuity in the boundary condition at the edge of the piston. It is widely known that



Figure 6. Pressure distribution along the axis of the piston (r"0) at (a) the beginning of a cycle, (b) one-quarter
of a cycle, (c) half of cycle, (d) three-quarters of a cycle: ***, numerical solution; ) ) ) ) ) ) , exact solution.
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short-wavelength spurious numerical waves are generated in such discontinuous regions of
the computation domain. Thus, arti"cial viscosity term is used in the numerical
computation. The numerical results in Figures 5 and 6 are calculated with optimum value of
arti"cial viscosity. The directivity envelopes of the analytic solution and numerical
solutions, which are calculated with various values of arti"cial viscosity, are presented in
Figure 7. As the value of arti"cial viscosity decreases, the directivity envelope of the
numerical solution approaches that of the analytic solutions. But under certain value
(k

a
"0)15) of arti"cial viscosity, the oscillation in the directivity envelope appears and

propagates from the symmetry axis to the side directions. This oscillation is produced by
spurious waves. Those spurious waves are mainly due to abrupt change in the governing
"nite di!erence equations between the mesh points on the symmetric axis and the axis-right
mesh points. But there is no signi"cant di!erence in the side lobe and node structures that
are main points of this research. Thus, in all the following numerical simulations, the value
of arti"cial viscosity is chosen to be as minimal as possible only if it can suppress that
oscillation in the directivity envelope.

We devise three types of piston model to investigate the e!ects of discontinuous
boundary conditions at the directivity of sound from the pistons. The schematics of these
three di!erent piston models are given in Figure 8. The boundary types of the piston include
Gaussian function, cosine function and #at plate oscillation. There are all distinct
mathematical characteristics of each boundary condition. For the Gaussian function
oscillation, there is a continuous change in displacement and slope at the edge of the piston.
For the cosine oscillation, the displacement is continuous but the slope is discontinuous at
the edge of the piston. For the oscillation of the solid #at plate, both the displacement and
slope are discontinuous. For convenience, the pistons with such boundary conditions are
referred to as Models I, II and III respectively.



Figure 7. The directivity envelopes of the analytic and numerical results at various arti"cial viscosity: } ) } ) } ) },
analytic result; ***, numeric, k

a
"0)10; } } } } } }, numeric, k

a
"0)15; } ) ) } ) ) numeric, k

a
"0)20.
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We carry out the numerical simulations for three piston models at several Helmholtz
numbers to assess the e!ects of discontinuous boundary on the sound radiation. The results
of the numerical simulations are shown in Figure 9. Figure 9(a) shows the directivity
patterns of Model I. As the Helmholtz number of Model I increases, the magnitude of the
directivity envelope also increases but the number of lobe does not change; the only one
main lobe exists up to the Helmholtz number, ka"3n. Figure 9(b) shows the directivity
envelopes of Model II. The relationship between the Helmholtz number and the magnitude
of the directivity envelope is the same with Model I. But the same thing cannot be said
about the lobe structure. In the case of Model II, the small side lobes exist and change their
direction and number as the Helmholtz number increases; two side lobes at ka"2n and
four side lobes at ka"3n. Model III tracks similar trends of Model II at each Helmholtz
number although there are discrepancies in the direction of the side lobes. Through the
comparison of numerical results of each model, we "nd that the discontinuity at the edge of
piston as well as the Helmholtz number is an important factor in determining the sound
radiation patterns.

6. 3-D SIMULATION AND DISCUSSION

If free stream is present, the problem of noise radiation from an oscillating, circular piston
cannot be axisymmetric. Thus, a full 3-D numerical simulation is needed. In this section, we
carry out a 3-D numerical simulation for the acoustic wave radiation from three types of
pistons with several free-stream velocities. If there is no other notice, all the calculations are



Figure 8. Three types of oscillation.
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executed with the following conditions; Dx"Dy"Dz"1)0, Dt"0)01, u"0)2n,
e
0
"10~4, and 101]101]51 grids are used.
The computational domain and various boundary conditions are given in Figure 10.

Since numerical simulation is carried out with Cartesian grids, there are discrepancies
between the grid lines and the boundary lines of the piston. So, arti"cial viscosity must be
imposed primarily around the edge of the piston. The arti"cial viscosity is taken to be of
maximum value for all mesh points lying in the semi-hemisphere region within three mesh
points from the edge line of the piston. Far away from the circular line of the piston, a mesh
Reynolds number is set to be of minimum value. A Gaussian distribution with a halfwidth
of three mesh points is used for the maximum value of the mesh Reynolds number to the
minimum. We obtain the maximum and minimum values of the arti"cial viscosity for each
model through numerical trial and error.

We carry out all the 3-D numerical simulations with a rectangular grid to solve problems
with a circular hole. This means that the boundary of the hole is not necessarily well
resolved. We assume that poor grid resolution around the circular piston boundary can
make numerical errors. This guess is a$rmed by the grid re"nement study. Figure 11 shows
the pressure contours (p"0) and the directivity patterns of Model I at the wall plane
(z"0). Figure 11(a), 11(b), and 11(c) show the pressure contours at di!erent grid lengths;
respectively, at Dx"Dy"Dz"1)25, 1)0, and 0)625. As the grid length becomes more
re"ned, the numerical results show better agreement with the analytic one. Figure 11(d)
shows the directivity patterns at the di!erent grid length. The directivity envelopes in the
case of Dx"Dy"Dz"1)25 show apparently grid-originated numerical error due to poor
grid resolution around the circular piston boundary. At the grid lengths of 1)0 and 0)625,
numerical results show good agreement with the analytic one. Because the boundary
discontinuity of Models II and III is steeper than that of Model I, this grid-originated
numerical error becomes more signi"cant for Models II and III. Thus, the arti"cial viscosity



Figure 9. Directivity patterns of three piston models at several Helmholtz number: (a) Model I, (b) Model II,
(c) Model III. } ) } ) } ) }, ka"n; ) ) ) ) ) ) , ka"2n; ***, ka"3n.
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Figure 10. The computation domain and boundary conditions, Cartesian grid number (101]101]51).

Figure 11. Pressure contours (p"0) and directivity patterns at the plane of z"0 from the Model I. (a) Pressure
contour (p"0) with Dx"1)25:***, numeric; ) ) ) ) ) ), analytic. (b) Pressure contour (p"0) with Dx"1)0:**,
numeric; ) ) ) ) ) ) ), analytic. (c) Pressure contour (p"0) with Dx"0)625: **, numeric; ) ) ) ) ) ), analytic. (d) The
comparison of directivity patterns:***, Dx"1)25; } ) } ) } , Dx"1)0; } } } } } } } , Dx"0)625; ) ) ) ) ) ), analytic.
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Figure 12. Mean-square pressure of each oscillation type in the plane, y"0 and z"0, Mx"0. Model
I: Gaussian, Model II: cosine, Model III: #at plane.

Figure 13. Mean-square pressure of each oscillation type in the plane, y"0 and z"0, Mx"0)2. Model I:
Gaussian, Model II: cosine, Model III: #at plane.
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in the simulations for these two models needs to be bigger than that of Model I. As the
velocity of free stream becomes faster, this grid-originated error play a more important role
in the accuracy of numerical simulation. Although we can improve the accuracy of the
numerical simulation by resolving the physical domain with more grids, the computational
cost would prohibitively increase in a manner similar to the cubic relation. Furthermore,



Figure 14. Mean-square pressure of each oscillation type in the plane, y"0 and z"0, Mx"0)4.
Model I: Gaussian, Model II: cosine, Model III: #at plane.
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through the comparison between the numerical and analytical results, we "nd that the
numerical simulation with the grids of Dx"Dy"Dz"1)0 shows satisfactory results,
similar enough to the analytic results to show the e!ects of discontinuous boundary
conditions on the sound radiation patterns. Thus, we carry out all the following calculations
with the grid resolution of Dx"Dy"Dz"1)0.

Figures 12}14 show the p2 contours of each piston model at the plane of y"0 and z"0
according to three free-stream velocities. In Figure 12, Mx"0, the acoustic wave from
Model I propagates mainly in the upper direction, but in Models II and III, sound
propagates not only in the upper direction but also in the sideward direction despite the
di!erences in both magnitude and direction. Such tendency of the propagation pattern of
each model is maintained as free-stream velocity increases. However, it is noticed in Figures
13 and 14 that in Models II and III, not only dose the direction of sound propagation
change accordingly as the free-stream velocity increases but also the number of the lobes.

To clearly show the e!ects of the boundary conditions on the sound radiation patterns,
Figures 15}17 show the directivity pattern of each oscillation type in the y"0 plane which
is parallel to the free stream and perpendicular to the wall. For Model I in Figure 15, there is
only one lobe in the #z-axis direction without node. As the free-stream velocity increases,
the main lobe is inclined toward the down stream, but in Model II, it is observed that there
are two extra side lobes that do not exist in Model I, although very weak, in addition to the
main lobe (Figure 16). Furthermore, as the velocity of the free stream increases, the sound
directivity pattern changes not only in the direction of the lobes but also in the number of
lobes. The downstream lobe disappears at Mx"0)2 and the upstream lobe disappears at
Mx"0)3. Sound radiation patterns of Model III are shown in Figure 17. The sound
radiation patterns show a trend similar to that of Model II but side lobes exist in the upper
side direction than that of Model II. Like in Model II, as the velocity of the free stream
increases, both the direction of the lobes and the number of lobes change. Production of the
side lobes seems to be mainly due to the di!erence in the boundary condition at the edge of
the piston.



Figure 15. Directivity patterns of the Model I at several free streams: ***, numerical; ) ) ) ) ) ), analytic.

Figure 16. Directivity patterns of the Model II at several free streams: ***, numerical; ) ) ) ) ) ), analytic.
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It is well known from the classical theory that as the frequency of the oscillation of the #at
plate piston increases, the radiation pattern obtains many side lobes and the angular width
of the major lobe becomes smaller. This study, however, shows that the velocity of the free
stream coupled with the frequency and boundary condition of the piston also a!ect the
radiation patterns of sound. There are three lobes in both Models II and III at Mx"0 but
the direction of the side lobes are di!erent. As the velocity of the free stream increases, there
are changes not only in the direction of the noise but also in the number of lobes. The
boundary conditions of the piston at the edge of the piston coupled with free-stream
velocity also change the sound radiation patterns in terms of both the direction and the
number of the lobes. Via the comparison with each case, the discontinuity of the slope at the
boundary between the piston and the solid wall produce side lobes and the discontinuity of
the displacement causes the side lobes to go higher than the discontinuity of the slope.



Figure 17. Directivity patterns of the Model III at several free streams: ***, numerical; ) ) ) ) ) ), analytic.
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7. CONCLUSION

All the numerical simulations have the essential quality of discontinuity whether physical
phenomena in the real world are continuous or not. In CAA, this quality of numerical
simulation is important because it may be a potential source of sound. This point is focused
on through the numerical simulation.

The sound propagation from an oscillating, ba%ed piston in a free stream with the three
types of boundary conditions at the edge of the piston was simulated numerically by using
the DRP "nite di!erence scheme.

It is not only the oscillation frequency of the piston but also the discontinuity of the
boundary condition at the edge of the piston, coupled with the velocity of the free stream
that a!ects the directivity of the sound in terms of both the direction and the number of
lobes.

Through the comparison of three types of boundary conditions at the edge of the piston,
it is shown that discontinuity of the slope at the edge of the piston produces side lobes. To
apply this result for a more general case, a creation of the nodes in sound propagation
patterns from a noise source can be partially attributed to a certain discontinuity of the
sound source.
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